COVID-19 fattens up our body's cells to fuel its viral takeover PNNLab NatureComms
293T-ACE2 or Caco2 cells were seeded at 70% cell density in 24-well plates and allowed to grow overnight. Cells were then inoculated with USA-WA1/2020 for 1 h at 37 °C in 2% FBS DMEM, rocking gently every 15 min. After 1 h, infection media was removed and replaced with normal 10% DMEM . Cells were fixed 8 h, 24 h, or 48 h after infection in 4% PFA.
. Lipid droplets were counted and their sizes, in number of pixels, were measured, using a Cellprofiler pipeline. For transfection experiment, regions of interest were first identified based on intensity in the Strep channel so that only transfected cells were analyzed.293T-ACE2 and Caco2 cells were seeded in 96-well plates. The next day they were treated with six 5-fold dilutions of each compound, starting from 50 µM. Each condition was tested in triplicate.
. Resazurin was added to a concentration of 0.15 mg/mL and cells were left at 37 °C for 4 h, and then fluorescence intensity was measured using a BMG CLARIOstar fluorescence plate reader with 560 nm excitation/590 nm emission.The highest concentration for each inhibitor that did not cause cytotoxicity was selected for this assay. For most described inhibitors 10 µM was used, except remdesivir .
United Kingdom Latest News, United Kingdom Headlines
Similar News:You can also read news stories similar to this one that we have collected from other news sources.
Researchers analyze potential of niclosamide as a SARS-CoV-2 treatmentA recent study posted to the bioRxiv* preprint server assessed whether niclosamide could be employed in coronavirus disease 2019 (COVID-19) therapy.
Read more »
Scientists conduct meta-analysis of the impact of SARS-CoV-2 on sperm parametersScientists conduct meta-analysis of the impact of SARS-CoV-2 on sperm parameters SARSCoV2 COVID19 Fertility MaleFertility
Read more »
Recombinant SARS-CoV-2 harboring double reporters for COVID-19 surveillanceIn a recent article posted to the bioRxiv* preprint server, researchers at Texas Biomedical Research Institute, Georgia State University, and the University of Alabama at Birmingham developed a bireporter-expressing recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) for tracking SARS-CoV-2 infection.
Read more »
Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing MiceSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current pandemic, resulting in millions of deaths worldwide. Increasingly contagious variants of concern (VoC) have fueled recurring global infection waves. A major question is the relative severity of the disease caused by previous and currently circulating variants of SARS-CoV-2. In this study, we evaluated the pathogenesis of SARS-CoV-2 variants in human ACE-2-expressing (K18-hACE2) mice. Eight-week-old K18-hACE2 mice were inoculated intranasally with a representative virus from the original B.1 lineage or from the emerging B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), or B.1.1.529 (omicron) lineages. We also infected a group of mice with the mouse-adapted SARS-CoV-2 (MA10). Our results demonstrate that B.1.1.7, B.1.351 and B.1.617.2 viruses are significantly more lethal than the B.1 strain in K18-hACE2 mice. Infection with the B.1.1.7, B.1.351, and B.1.617.2 variants resulted in significantly higher virus titers in the lungs and brain of mice compared with the B.1 virus. Interestingly, mice infected with the B.1.1.529 variant exhibited less severe clinical signs and a high survival rate. We found that B.1.1.529 replication was significantly lower in the lungs and brain of infected mice in comparison with other VoC. The transcription levels of cytokines and chemokines in the lungs of B.1- and B.1.1.529-infected mice were significantly less when compared with those challenged with other VoC. Together, our data provide insights into the pathogenesis of previous and circulating SARS-CoV-2 VoC in mice.
Read more »
Viral dynamics of Omicron and Delta SARS-CoV-2 variants with implications for timing of release from isolation: a longitudinal cohort studyAbstractBackground. In January 2022, United States guidelines shifted to recommend isolation for 5 days from symptom onset, followed by 5 days of mask wearing.
Read more »
Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing MiceSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current pandemic, resulting in millions of deaths worldwide. Increasingly contagious variants of concern (VoC) have fueled recurring global infection waves. A major question is the relative severity of the disease caused by previous and currently circulating variants of SARS-CoV-2. In this study, we evaluated the pathogenesis of SARS-CoV-2 variants in human ACE-2-expressing (K18-hACE2) mice. Eight-week-old K18-hACE2 mice were inoculated intranasally with a representative virus from the original B.1 lineage or from the emerging B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), or B.1.1.529 (omicron) lineages. We also infected a group of mice with the mouse-adapted SARS-CoV-2 (MA10). Our results demonstrate that B.1.1.7, B.1.351 and B.1.617.2 viruses are significantly more lethal than the B.1 strain in K18-hACE2 mice. Infection with the B.1.1.7, B.1.351, and B.1.617.2 variants resulted in significantly higher virus titers in the lungs and brain of mice compared with the B.1 virus. Interestingly, mice infected with the B.1.1.529 variant exhibited less severe clinical signs and a high survival rate. We found that B.1.1.529 replication was significantly lower in the lungs and brain of infected mice in comparison with other VoC. The transcription levels of cytokines and chemokines in the lungs of B.1- and B.1.1.529-infected mice were significantly less when compared with those challenged with other VoC. Together, our data provide insights into the pathogenesis of previous and circulating SARS-CoV-2 VoC in mice.
Read more »